Real-time identification of vehicle dynamics for mobile machines with electrified drive trains

نویسندگان

  • P. Osinenko
  • M. Geißler
چکیده

Modern concepts of electrified drive trains for off-road vehicles allow for some new possibilities for control strategies. When considering traction efficiency, the most controllable factor is wheel-slippage. Many existing slip control systems use a certain threshold value of slip as reference, for example for farm tractors, electrohydraulic hitch control system (EHC) controls the implement, which comprises depth and/or draft force control with a goal to keep the slip below about 10% for 4WD vehicles. New designed control system for off-road vehicles with electrified drive trains is based on real-time estimation of traction parameters and maximizes both traction efficiency and performance together and can be extended with additional actions, like compensating of side-slip angle or “pull-in-turn”. The present research describes effective real-time identification of all necessary dynamic information on every single wheel using only system inherent sensors, i.e. wheel speed, vehicle velocity (a radar or GPS-antenna), draft force sensors (from an EHC) and front suspension hydraulic cylinder pressure sensor to measure the vertical load on front wheels. There are options to perform identification without draft force and wheel load measurement. The identification system helps to define optimal slip which is sent to the slip control system and/or driver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

A real-time recursive dynamic model for vehicle driving simulators

This paper presents the Real-Time Recursive Dynamics (RTRD) model that is developed for driving simulators. The model could be implemented in the Driving Simulator. The RTRD can also be used for off-line high-speed dynamics analysis, compared with commercial multibody dynamics codes, to speed up mechanical design process. An overview of RTRD is presented in the paper. Basic models for specific ...

متن کامل

Yaw Rate Control and Actuator Fault Detection and Isolation for a Four Wheel Independent Drive Electric Vehicle

In this paper, a new actuator fault detection and isolation method for a four wheel independent drive electric vehicle is proposed. Also, a controller based on sliding mode control method is proposed for lateral stability of the vehicle. The proposed control method is designed in three high, medium and low levels. At the high-level, the vehicle desired dynamics such as longitudinal speed refere...

متن کامل

Modification of Equivalent Consumption Minimization Strategy for a Hybrid Electric Vehicle

Equivalent consumption minimization strategy (ECMS) is one of the main real-time control strategies for hybrid electric vehicles (HEVs). This paper proposes a method to modify this strategy. This modification reduces calculation time of ECMS and therefore, facilitates its application as the real-time controller. Dynamic programming (DP) method is employed to reach this aim. This method is appli...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015